

A multi-layer snow cover scheme for numerical weather and climate models

Sascha Bellaire¹, Michael Lehning^{1,2} & Jean-Marie Bettems³

¹WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

²CRYOS, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland ³MeteoSwiss, Zurich, Switzerland

Zurich, 08.08.2019

COSMO (Global usage) & ICON_{Global, LAM, LES}

COSMO & ICON used in climate mode

Single layer snow cover scheme – COSMO

$$\frac{\partial T_{snow}}{\partial t} = \frac{1}{\left(\rho c \Delta z\right)_{snow}} \left(Q_F - Q_G + Q_M\right)$$

Atmospheric Forcing:

 $Q_{F} = Q_{S}^{*} + Q_{L}^{*} + Q_{HF} + Q_{SF}$

Ground heat Flux:

COSMO-2 validation (Snow depth)

Weissfluhjoch

Single layer snow cover scheme – SnowMIP project

Annals of Glaciology 38 2004 © International Glaciological Society

Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project)

PIERRE ETCHEVERS,¹ ERIC MARTIN,¹ Ross BROWN,² Charles FIERZ,³ Yves LEJEUNE,¹ ERIC BAZILE,⁴ Aaron BOONE,⁴ Yong-Jiu DAI,⁵ Richard ESSERY,⁶ Alberto FERNANDEZ,⁷

From Conclusions:

simulated amount of melting that is too small. Finally, the model complexity appears to have a strong impact on the net longwave radiation simulation. Indeed, snow surface temperature is the result of a complex equilibrium in the snowpack, and the models which explicitly simulate internal snow processes simulate the snow surface temperature best. In contrast, model complexity has relatively little

Snow cover schemes – Model complexity

○ 'Good' models must include ...

o multiple layers,

o new snow density,

o albedo parameterization (SEB),

heat conduction/equation,

phase changes,

○ water transport.

compaction/settlement.

Multi-layer snow cover scheme – COSMO

Proposed COSMO Priority Task (PT) Project – SAINT

COSMO Priority Task: <u>Snow cover Atmosphere INT</u>eractions (SAINT)

Version 1.0, 13.10.2017

Task Leader: Sascha Bellaire (WSL Institute for Snow and Avalanche Research SLF)

Main goal

Improving the current multi-layer snow cover scheme

The Scheme: Multi-layer snow cover scheme (MLS; Layering)

General Structure:

- Maximum 10 snow layers
- fixed first layer thickness
 0.01 m
- Logarithmic increase of layer thickness with depth

Limitations:

- No layer smaller than 0.01 m
- Special treatment for snow depth < 0.01 m

Snow cover Modelling – Volumetric fractions

Formulation in SNOWPACK:

$$\theta_i + \theta_w + \theta_a = 1$$
$$\rho_s = \rho_i \theta_i + \rho_w \theta_w + \rho_a \theta_a$$

 θ : Volumetric Fraction (-)

 ρ : Density (kg m⁻³) *s, i, w, a, v*: subscripts for Snow, Ice, Water, Air, Vapor

Bulk Temperature Equation:

$$\rho_{s}c_{p}\frac{\partial T_{s}}{\partial t} - \frac{\partial}{\partial z}(k_{eff}\frac{\partial T_{s}}{\partial z}) = [Q_{pc}] + [Q_{mm}] + Q_{sw};$$

$$[Q] = Wm^{-3} \text{ Volumetric Heat Source}$$

$$\rho_{s}c_{p} = \rho_{i}c_{i}\theta_{i} + \rho_{w}c_{w}\theta_{w} + \rho_{a}c_{a}\theta_{a}$$

 T_s : Temperature of Snow (K) c_p : Heat Capacity (J kg⁻¹ K⁻¹) k_{eff} : Effective Thermal Conductivity (W m⁻¹ K⁻¹)

Snow Metamorphism: Grain Types

Photo's: SLF

Snow Metamorphism: Faceting (CT images)

cold

Heat Equation – Implementation

1D heat equation:

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}; \quad 0 \le x \le L; \quad t \ge 0$$

- Solve the one-dimensional heat equation.
- Setup a tridiagonal matrix for set of linear equations for each layer.
- ${\rm \circ}$ Solved using the Thomas-Algorithm

```
.
! Setup tridiagonal matrix for set of linear equations for each layer ...
  ! ... TOP LAYER
                           Top laver
  dz_low = zm_sn(top_sn
  a(top_sn) = 0.0_wp
  b(top_sn) = 1 + (1 - cn) * alpha(top_sn) * hcon_sn_now(top_sn)/dz_low - alpha(top_sn)*dlw_u_sn
  c(top_sn) = - (1 - cn) * alpha(top_sn) * here now(top_sn)/dz_low
  d(top_sn) = t_sn(top_sn) + alpha(top_sn) (for_sn - )w_u_sn*t_sn(top_sn) + cn*hdif_sn(top_sn))
   ! ... INNER LAYERS
                                                   for sn = forcing = SEB
   D0 i = top_sn+1, bot-1, 1
     dz_{uv} = zm_{sn}(i) - zm_{sn}(i-1)
     dz_low = zm_sn(i+1) - zm_sn(i)
     a(i) = - (1 - cn) * alpha(i) * hcon_sn_now(i-1)/dz_up
     b(i) = 1 + (1 - cn) * alpha(i) * (hcon_sn_now(i) /dz_low + hcon_sn_now(i-1)/dz_up)
     c(i) = -(1 - cn) * alpha(i) * hcon_sn_now(i) /dz_low
     d(i) = t_sn(i) + cn^*alpha(i) * (hdif_sn(i) - hdif_sn(i-1))
   ENDDO
  ! ... BOTTOM LAYER
  dz_up = zm_sn(bot) - zm_sn(bot-1)
  a(bot) = -(1 - cn) * alpha(bot) * hcon_sn_now(bot-1)/dz_up
  b(bot) = 1 + (1 - cn) * alpha(bot) * hcon_sn_now(bot-1)/dz_up
  c(bot) = 0.0_{wp}
  d(bot) = t_sn(bot) - cn*alpha(bot-1) + alpha(bot)*hdif_sn(bot)
! Solve the system - Thomas Algorithm
! NOTE: The following can be put in a subroutine
  D0 i = 1, bot, 1
  e(i) = t_sn(i)
  ENDDO
  beta = b(top_sn)
   ! Forward substitution
   DO j = 1, bot, 1
       IF(j == 1) THEN
         e(j) = d(j) / beta
       ELSE
         qama(j) = c(j-1) / beta
         beta = b(j) - a(j) * gama(j)
         e(j) = (d(j) - a(j) * e(j-1)) / beta
       ENDIF
   END DO ! end of i
    ! Backward substitution
    DO j = bot - 1 , 1, -1
      e(j) = e(j) - gama(j+1) * e(j+1)
    ENDDO
```

Snow cover scheme (MLS) – Implementation

... consists of 2 (or 3) subroutines called ...

... before solving the heat equation in TERRA

5646		
5647	END DO	
5648	END DO	! soil layers
5649		
5650	IMR: 05.05.2017	and later: heat-budget for inner soil layers substituted by a slightly different notation: >
5651	!	
5652		
5653	***********	***************************************
5654	!MR: 05.05.2017	: modified heat-budget for boundary soil layers including a single-layer snow-cover: <
5655	İ *************	***************************************
5656		

The Method: Validation (COSMO-7)

Elevation (m) - 4000 - 3000 - 2000 - 1000 - 0 ... ~ 700 km x 700 km domain
 centered around Davos ...

... covering most of the Alpine
 ridge ...

 ... computationally inexpensive ...

 ... boundary conditions from COSMO-7 analysis ...

o ... 72-hour forecast/hindcast

Surface Temperature – Benchmarking (SNOWPACK vs. MLS)

Heat Equation – Benchmarking (Observations)

Heat Equation – Benchmarking (SNOWPACK vs. MLS)

Weissfluhjoch

TIME

Heat Equation – Snow temperature profile Ort: GR Davos Weissfluhioch / Versuch sfeld Datum / Zeit: 14.02.2015 09:45

2017-02-16 00:00

Beobachter: C. Fierz / Martina Sättele Profilm: 1

Hasty Pit: Nein

Höhe ü. M.: 2540 m Exposition: flach / Neigung: * Koordinaten: 780872 / 189272 Gesamtwasserwert: 479.9 mm (HS: 153 cm) Mittl. Raumgew.: 313.7 kg/m²

Bewölkung: leicht bewölkt (1-2/8) Wind: NW / 1 km/h Mittl. Rammwiderstand: 117 N Pistenprofil: Nein

Luftemp.: -0.9 °C

Wetter/Niederschlag: Über lange strecken beinahe windstill (nur katabatische Winde von NW), dann drehen auf S am Mittag Bemerkungen: HS(IMIS)=146 cm, Tss(IMIS)=-14.9 °C @ 10:00

Anrissprofil: Nein

+ Neuschnee / Filz • kleine Runde 🛛 kantig 🗚 Tiefenreif 🗸 Oberflächenreif 🖉 Schmeizform = Eislamelle 👝 kantig, abgerundet 🔬 Graupel

Atmosphere

Temperature (K)

Copyright (C) SLF Dayos

Intercantonal Measurement and Information System (IMIS)

Weissfluhjoch (FOR_E + FOR_D = 0.93)

Boveire-PointedeToules (FOR_E = FOR_D = 0)

= Single layer snow cover scheme (SLS) X = Multi-layer s

X = Multi-layer snow cover scheme (MLS)

Time

Results – Forcing (Albedo)

P_{rate} = Precipitation rate T_{SFC} = Snow surface temperature T_{10m} = Air Temperature 10 m

Results – Forcing (Albedo)

Time

Results – Forcing (Transfer Coefficients)

Boundary-Layer Meteorology

October 2017, Volume 165, <u>Issue 1</u>, pp 161–180 | <u>Cite as</u>

How do Stability Corrections Perform in the Stable Boundary Layer Over Snow?

|--|--|--|

Authors and affiliations

Sebastian Schlögl 🖂 , Michael Lehning, Kouichi Nishimura, Hendrik Huwald, Nicolas J. Cullen, Rebecca Mott

Stability Corrections:

$$\psi_m\left(T,T_{sn},\bar{U}\right)=a_1B+b_1S,$$

$$\psi_s\left(T,T_{sn},\bar{U}\right)=a_2B+b_2S,$$

B =	$\Delta T/\bar{T}$	
S =	$z_{\rm ref} g/\bar{U}$	ľ

test site	a_1	b_1	test site	<i>a</i> ₂	b_2
WFJ07 (3 m)	3.227	0.0043	WFJ07 (3 m)	-982.90	-0.0005
WFJ07 (5 m)	-4.441	0.0025	WFJ07 (5 m)	-642.51	0.0009
WFJ11	-30.74	0.0008	WFJ11	-1135.4	-0.0015
PM07 NWW	-191.93	0.0008	PM07 NWW	-751.73	-0.0005
PM07 SEE	-29.55	0.0090	PM07 SEE	-692.74	-0.0123
GR00 (1 m)	-145.41	-0.0914	GR00 (1 m)	-378.92	-2.0489
GR00 (2 m)	-179.56	-0.0369	GR00 (2 m)	-243.93	-0.7448
Universal	-65.35	0.0017	Universal	-813.21	-0.0014

Sensible heat flux: $H = \rho c_p C_H \bar{U} \Delta \theta,$

where k = 0.4 is the von Kármán constant, $\zeta = (-k z_{ref}gT_*)/(\theta_s u_*^2)$ is the modelled stability parameter (stability parameter henceforth), $u_* = k\bar{U}(\ln(z_{ref}/z_{0M}) - \psi_m)^{-1}$ is the modelled friction velocity, $T_* = k(\theta_s - \theta_{z_{ref}})(\ln(z_{ref}/z_{0M}) - \psi_s)^{-1}$ is the modelled temperature scale, z_{0M} is the aerodynamic roughness length and ψ_m and ψ_s are the stability corrections for momentum and scalars. In our analysis, we used the simple approach that the roughness

Results – Forcing (Transfer Coefficients)

Time

Results – Forcing (Transfer Coefficients)

Time

Weissfluhjoch (FOR_E + FOR_D = 0.93)

Boveire-PointedeToules (FOR_E = FOR_D = 0)

= Single layer snow cover scheme (SLS) X = Multi-layer s

X = Multi-layer snow cover scheme (MLS)

Heat Equation – Initial Results

Δ = Multi-layer snow cover scheme (MLS) with new flux parameterizations

Snow cover scheme (MLS) – Implementation

... consists of 2 (or 3) subroutines called ...

... before solving the heat equation in TERRA

5646		
5647	END DO	
5648	END DO	! soil layers
5649		
5650	IMR: 05.05.2017	and later: heat-budget for inner soil layers substituted by a slightly different notation: >
5651	!	
5652		
5653	***********	***************************************
5654	!MR: 05.05.2017	: modified heat-budget for boundary soil layers including a single-layer snow-cover: <
5655	İ *************	***************************************
5656		

New snow— Initial Results (volumetric ice content)

 θ_{i}

Snow cover modelling: SNOWPACK (Phase Changes)

Treatment in SNOWPACK:

- Calculate "Hypothetical" Temperature
- Determine mass & energy associated with phase change.

$$\Delta T = T_s - T_{melt}$$
$$\Delta \theta_w = \frac{c_s \theta_i \rho_i \Delta T}{L_f \rho_w}$$
$$\Delta \theta_i = \frac{\rho_w \Delta \theta_w}{\rho_i}$$
$$Q_{pc} = \Delta \theta_i \rho_i L_f$$
$$L_f = 334 \frac{J}{kg}$$

2017-03-15 00:00 2017-03-15 12:00 2017-03-16 00:00 2017-03-16 12:00 2017-03-17 00:00

Phase Changes – Initial Results (Water content)

 θ_{w}

2017-03-15 00:00 2017-03-15 12:00 2017-03-16 00:00 2017-03-16 12:00 2017-03-17 00:00

Settling & Re-meshing – Implementation

= Layer depth/nodes

Time

Verification – 'long-term' testing (1 month)

Verification – 'long-term' testing (1 month)

Verification – 'long-term' testing (1 month)

Summary: Priority Task (PT) project - SAINT

- PT SAINT: Joined project of MeteoSwiss and SLF
- Start: July 2017 ; Ends June 2020
- Goal: New 'operational' multi-layer snow cover scheme for NWP models COSMO and ICON.
- 'Limited' SNOWPACK version:
 - \circ Max. 10 Layers
 - 'Heat conduction'
 - Phase changes (SNOWPACK)
 - Water transport (SNOWPACK)
 - Settling/Compaction
 - 0 ...

- Promising initial results in terms of snow cover evolution and properties.
- Comparable to SNOWPACK.
- Intensive validation pending, but ...
- ... so far it is numerically stable even on larger domains, i.e. varying snow cover

Outlook & Future work

- Version 1 on GPU 'ready' by mid/end September.
- Further testing/standard verification. Validation of snow cover scheme (fully coupled with TERRA_ML; interface routine)
- Further adaptations of the scheme (e.g. absorption of solar energy, sublimation/evaporation, rain on snow ...).
- First runs with ICON (global, LAM) fall/winter 2019/2020.

- Adaptation of snow analysis and data assimilation.
- Standalone version of the snow cover scheme to be able to force it externally (e.g. INCA, AWS etc.).
- Science!!!

Thanks! Questions and/or comments?

Sascha Bellaire¹, Michael Lehning^{1,2} & Jean-Marie Bettems³

¹WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

²CRYOS, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland ³MeteoSwiss, Zurich, Switzerland

Email: bellaire@slf.ch